python如何控制内存
python控制内存的方法:
一、对象的引用计数机制
二、垃圾回收机制
三、内存池机制
一、对象的引用计数机制
Python内部使用引用计数,来保持追踪内存中的对象,所有对象都有引用计数。
引用计数增加的情况:
1、一个对象分配一个新名称
2、将其放入一个容器中(如列表、元组或字典)
引用计数减少的情况:
1、使用del语句对对象别名显示的销毁
2、引用超出作用域或被重新赋值sys.getrefcount()函数可以获得对象的当前引用计数
多数情况下,引用计数比你猜测得要大得多。对于不可变数据(如数字和字符串),解释器会在程序的不同部分共享内存,以便节约内存。
二、垃圾回收
1、当一个对象的引用计数归零时,它将被垃圾收集机制处理掉。
2、当两个对象a和b相互引用时,del语句可以减少a和b的引用计数,并销毁用于引用底层对象的名称。然而由于每个对象都包含一个对其他对象的应用,因此引用计数不会归零,对象也不会销毁。(从而导致内存泄露)。为解决这一问题,解释器会定期执行一个循环检测器,搜索不可访问对象的循环并删除它们。
三、内存池机制
Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。
1、Pymalloc机制。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。
2、Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的malloc。
3、对于Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。
以上内容为大家介绍了python如何控制内存,希望对大家有所帮助,如果想要了解更多Python相关知识,请关注IT培训机构:千锋教育。
相关推荐HOT
更多>>python流式读取大文件的两种方法
python流式读取大文件的两种方法1、使用read方法分块读取使用更底层的file.read()方法,与直接循环迭代文件对象不同,每次调用file.read(chunk_...详情>>
2023-11-14 16:48:08pythongreenlet如何交替运行
pythongreenlet如何交替运行1、greenlet说明greenlet是一个基于Greenlet实现的网络库,它使用greenlet来实现协同程序。其基本思想是,当greenle...详情>>
2023-11-14 14:52:57python收集参数的调用顺序
python收集参数的调用顺序本文教程操作环境:windows7系统、Python3.9.1,DELLG3电脑。1、说明收集参数,关键字参数,普通参数可以混合使用使用...详情>>
2023-11-14 13:23:09python实例属性的优先级分析
python实例属性的优先级分析1、说明当在实例上给类属性赋值时,实际上是给这个实例绑定了同名的属性而已,并不会影响类属性和其他实例。使用实...详情>>
2023-11-14 10:17:33