大数据已经不简简单单是数据大的事实了,而重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些?下面就跟随千锋小编一起来看看:
可视化分析
大数据分析的使用者有大数据分析,同时还有普通用户,但是他们二者对于大数据分析基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
预测性分析
大数据分析终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能足以从数据中主动地提取信息。
数据质量和数据管理
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然加深入大数据分析的话,还有很多很多加有特点的、加深入的、加专业的大数据分析方法。如果你想了解多关于大数据的技术,那么不妨选择到千锋大数据培训进行相关系统专业的学习。
相关文章
了解千锋动态
关注千锋教育服务号
扫一扫快速进入
千锋移动端页面
扫码匿名提建议
直达CEO信箱